Semicustom Arrays for the Implementation of Front-End Electronics ICs

E.V. Atkin¹, A.A. Demin², I.I. Ilyushchenko¹, M.V. Khokhlov², S.V. Kondratenko¹, V.V. Maslennikov¹, Yu.N. Mishin¹, A.D. Pleshko¹, Yu.A. Volkov¹

¹MEPhI, Moscow, Russia

²SRIPEA, Zelenograd, Russia

Abstract

The approach to designing particular functional units and finished channels of front-end electronics on the basis of especially elaborated bipolar semicustom arrays (SA) is grounded. Brief data on the earlier elaborated bipolar non-complementary SA and the ICs, created on its basis, are presented. The structural peculiarities and characteristics of a new bipolar complementary SA and those of the signal processing circuits, placed on the latter, are described. The processing circuits are intended to handle particularly the signals of a solid-state electron multiplier - the analog of PMT.

References

- A. Goldsher et al. A semicustom array chip for creating high-speed front-end LSICs. Proceedings of the Third Workshop on Electronics for LHC Experiments, London, September 1997, pp.22-26.
- [2] E. Atkin, A. Goldsher. High-speed analog ICs for the equipment of physical experiments. M.:Chip News, 2000, v.6, pp.32-35.
- [3] Yu. Volkov, A. Demin, Yu. Mishin, S. Kondratenko, A. Pleshko, M. Khokhlov. Analog semicustom array for the implementation of wide-band amplifiers. Proceedings of the LVI scientific session, dedicated to the Day of Radio, Moscow, May 2001, v.1, p.208.